Real Time Operating Systems
Focused on FreeRTOS covemountainsoftware.com
- Feb 2017

Matthew Eshleman

http://covemountainsoftware.com

Background - Matthew Eshleman

- 20+ years of embedded software engineering, software
architecture, and project planning

- MSEE Georgia Tech

- Jumped into the RTOS world around 1998 - haven't
looked back

+ Learn more: http://covemountainsoftware.com/consulting

http://covemountainsoftware.com/consulting

Agenda

- What is an RTOS?
- What is available?
- Pros and Cons

- RTOS Fundamentals (examples using FreeRTOS running
on the ESP32)

+ Details on Demo, including 50,000 foot view of MQTT

- Demo!

What is a Real Time Operating System (RTOS) 7

- Framework of “Tasks” (threads).
- Mechanisms enabling communication between threads

- Mechanisms to protect data from standard thread data corruption
ISSUes

- Scheduler
- Threads, with priorities
- Maybe “drivers”

- “Real Time” - critical point.

O
~
“Real Time”)

- “Real Time” does not mean “fast”
- Real Time means deterministic

- A real time operating system guarantees the worst case
latency/delays regarding RTOS controlled behavior

+ Careful: your code can break that contract. Example:
the code running with the RTOS disables interrupts for
an extended time... delaying all RTOS controlled
behavior

What is available?

LN *- '
AdIED®» NTECRITY
- Linux - using “real time” extensions (maybe.. sort of?)

- uC/OS, ThreadX, VXWORKS, FreeRTOS, Integrity, QNX, Nucleus,
RIOT, NuttX... and many more.

- Free and open source? Certified? Royalty Free”? There is likely an
RTOS available to meet your requirements.

- Our focus today Is FreeRTOS

VXWORKS QNXNeutrino RTOS

Decisions... decisions...

- Selecting an RTOS: Key Points to consider during decision making
- Licensing
- Size (RAM, etc)
- Note, every OS object (semaphore, queues, etc) created will increase RAM

usage. Some RTOS’s balance their RAM usage differently. FreeRTOS uses
“more RAM” per object than a few others, for example.

- Interrupt handling
- “Task Context Switch Time”

- Cool algorithms: “Priority Inheritance”, “Preemptive”, “Cooperative”

- Tools, environment (Debugging, Tracing, etc)

Using an RTOS: Pros / Cons

- Con
- RAM/ROM Size and CPU overhead versus true bare metal while(1)
- Multi-threaded software can be error prone and difficult to find/fix common thread bugs
- End user report: “Every now and then it....”
- Deadlock, priority inversion, thread corruption... oh my!
- Pros
- Framework of common behaviors
- Facilities to ensure interrupts/threads play nice with each other
- Battery life and power usage

- The RTOS may/can help power down portions of the system when IDLE

RTOS and FreeRTOS
-undamentals

=
P
S e

I

Image: http://maxpixel.freegreatpicture.com/Books-Library-Knowledge-University-Education-1517100

http://maxpixel.freegreatpicture.com/Books-Library-Knowledge-University-Education-1517100

Scheduler

- Makes the decision regarding which task is currently executing

- Might have a “scheduling policy” setting to help make this decision. For example, Linux
supports multiple scheduler policies, such as round-robin, FIFO, and more.

* Nearly all RTOS options support a priority based preemptive scheduler, where the highest
priority thread runs first or preempts a lower priority thread/task.

- Manages the “context switch” process:

- Saving to RAM the previous thread’s register context and loading the CPU registers with
the new thread’s context.

- i.e. overhead. The price we pay for threads and an overall “OS” like environment.

- Key point: a thread may be executing code when a higher priority thread “preempts” the
thread. Much like when any firmware code is stopped by a hardware interrupt service routine.

- This is when typical thread data corruption issues may happen

Image: http://opensourceforu.com/2010/12/getting-started-with-rtlinux/

http://opensourceforu.com/2010/12/getting-started-with-rtlinux/

Threads / Tasks

- Independent code whose execution is managed by the RTOS
scheduler within an independent “context” which includes a dedicated
stack.

- Typically might be a function that looks like this:

void Task(void *)

{ icel
while (1) Play nice!

{

vOSBlockCallHere();

FreeRTOS - Create a Task (from FreeRTOS)

BaseType t xTaskCreate(TaskFunction_ t pvTaskCode,
const char * const pcName,
unsigned short usStackDepth,
void *pvParameters,
UBaseType t uxPriority,
TaskHandle t *pxCreatedTask

) ;
pvTaskCode - Pointer to the task entry function.

- Tasks are normally implemented as an infinite loop, and must never attempt to return or exit from their
implementing function. Tasks can however delete themselves.

pcName - A name for the task. Primarily for debbugging.

usStackDepth - The number of words (not bytes!) to allocate for use as the task's stack.
pvParameters - A value that will passed into the created task as the task's parameter.

uxPriority - The priority at which the created task will execute.

pxCreatedTask - Used to pass a handle to the created task out of the xTaskCreate() function. pxCreatedTask is
optional and can be set to NULL

FreeRTOS Task Usage Examples

° Simple polling Ioop (Demo code, see AccelReader.cpp).

void PollingTask(void *) {

while (1) {
vTaskDelay (33 milliseconds);

}

. Waiting on queued MeESSage (Demo code, see ColorMappedDataVisualizer.hpp).

void PendingOnQueuedMessageTask(void *) ({

while (1) {
Msg receivedMsg;
1f (xQueueReceive(mQueue, &(receivedMsg), (TickType t) portMAX DELAY)) {

Semaphore

- A semaphore is a RTOS object providing a thread safe OS
controlled signaling mechanism.

- Typically used to signal to waiting threads that a resource is now
available.

- Underlying concept is a count, often times referred to as “tokens”.
- Binary semaphore only supports ‘O’ or ‘1’ tokens (count)

- Might be used as a “lock,” but | recommend a mutex when
available.

- Examples:

- Represent how many free buffers remain in a pool

- Signal when an ISR is complete

Image: https://publicdomainreview.org/collections/flag-semaphore-qit/

https://publicdomainreview.org/collections/flag-semaphore-gif/

Semaphore - Create

SemaphoreHandle t xSemaphoreCreateBinary(void);

SemaphoreHandle t xSemaphoreCreateCounting(UBaseType t uxMaxCount,
UBaseType t uxInitialCount);

Notice when creating the “Counting” semaphore,
you can set the Max Count and the Initial Count.

Semaphore - Usage Example

volid TaskWaitingOnISRSignal(void *) {

while (1) {
xSemaphoreTake(m IsrSignalSema, portMAX DELAY);

Signals to the waiting task

volid MyHardwareIsrFunc() {
1f (somelIsrLogic) {
xSemaphoreGiveFromISR(m IsrSignalSema, &xHigherPriorityTaskWoken);

}

FreeRTOS requires use of special APIs when called from an ISR

Mutex - Mutual Exclusion

- A RTOS object providing a true locking mechanism, often times with optional OS
enabled algorithms to help prevent “priority inversion” induced failures.

- Lock —> <use resource> —> Unlock.
- Types: Non-recursive, recursive.
- Non-recursive: single lock. If the same thread tries to lock again, then it will hang.

- Recursive: The same thread may lock the same mutex multiple times without
blocking. Must unlock the mutex the exact same number of times

- When in doubt, | tend to use recursive.

- Note: FreeRTOS - can’t be used in an ISR. Which is fine, should never try to
lock anything in an ISR anyhow.

Mutex - Create

SemaphoreHandle t xSemaphoreCreateMutex(void);

SemaphoreHandle t xSemaphoreCreateRecursiveMutex(void);

Notice that FreeRTOS enables their mutex feature
within their semaphore APIs.

Mutex - Lock/Unlock

Unlock: BaseType t xSemaphoreGive(SemaphoreHandle t xSemaphore);

BaseType t xSemaphoreGiveRecursive(SemaphoreHandle t xMutex);

Note

LKXDKZ BaseType t xSemaphoreTake(SemaphoreHandle t xSemaphore,
TickType t xTicksToWait);

BaseType t xSemaphoreTakeRecursive(SemaphoreHandle t xMutex,
TickType t xTicksToWait);

Note

Reviewing FreeRTOS’s heavy use of macros, we actually find a Queue being used!

It would have been nice if FreeRTOS had used the same lock/unlock APIs for a normal vs a recursive mutex.

Deadlock

- When two or more threads compete for resources,
usually in different orders, resulting in all threads waiting
on a resource other threads already locked/own.

Thread A

LI\l SUMO v/
ZIN\ SUMO g

<
N

2riority Inversion, a rover, and the planet Mars

- Priority Inversion - Low priority thread A owns a resource that high priority
thread C is waiting upon. Thread B, with priority higher than A but less than
C, starts running, and now C is waiting on B and Al

- Results in Thread C missing deadlines... or causing a system reset, as it
did with the Mars Pathfinder.

Th read C waiting on A

O
0
Q)
Q
D)
@

Thread B

Thread A —

Owned by A Owned by A, desired by C

To fix priority inversion... we add priority inheritance

- Priority Inheritance

- If the RTOS detects priority inversion, the RTOS will temporarily raise the priority
of the low priority thread to the same priority of the waiting thread.

- This is how NASA/JPL fixed the Pathfinder reset issue: they sent a patch that
updated the mutex in question to use the RTOS’s priority inheritance algorithm

- From FreeRTOS:

- “Priority inheritance does not cure priority inversion! It just minimizes its effect in
some situations. Hard real time applications should be designed such that
priority inversion does not happen in the first place.”

- FreeRTOS implements priority inheritance by default, for some RTOS’s it is
optional or a parameter that must be set when creating the mutex (as was the

case with the Mar’s Pathfinder).

Queues

Nearly all RTOS vendors provide a
‘queue’, which is a thread safe = equeuc
mechanism to send a message to Enqueuelllll

waiting threads I

ypically “First In, First Out”

FreeRTOS API to create:

QueueHandle t xQueueCreate(UBaseType t uxQueuelength,
UBaseType t uxItemSize);

Image: https://en.wikipedia.org/wiki/Queue (abstract data type)#/media/File:Data Queue.svg

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)#/media/File:Data_Queue.svg

Queues continued...

* Pro
- “Events” are not lost (unless queue is full)
- Order of events is maintained by the queue
* Send data with an event
+ Cons
* Extra memory usage compared to a simple semaphore signal
Usage: overhead + MessageSize*NumberOfMsgs
- How deep should the queue be? (Non-trivial issue in safety oriented systems)

- How to handle when the queue is full? Drop message? Retry? Assert?

- Demo code usage example: ColorMappedDataVisualizer.hpp, class internal queue usage supporting
5 different commands/message types.

Timers

- An RTOS object that generates an event at certain time intervals or perhaps at
a certain absolute time

FreeRTOS supports interval based timers
Important Note: FreeRTOS implements timers in an internal task. Timers are
controlled (internally) via a message queue to that task. Timer calloacks must

be aware of this fact and behave accordingly.

- l.e. Timer callbacks must not themselves block or they may block other
timers

- Demo code: PatternGenerator class. A FreeRTOS timer drives the pattern
generator output.

FreeRTOS APIs are self-explanatory: nttpwww.freertos.org/FreeRTOS-Software-Timer-API-Functions.htm

http://www.freertos.org/FreeRTOS-Software-Timer-API-Functions.html

Interrupts

- Last... but not least... RTOS and Interrupts

- Some RTOS systems are hands on with interrupts (more overhead with flexibility). Some, like
FreeRTOS, are more light weight (more restrictions or special APIs to consider)

- Exact details depend upon the microcontroller
- When reviewing the FreeRTOS APIs, take careful note of which objects may be accessed from an ISR:
- Examples:
- XQueueSendFromISK(...)
- xSemaphoreGiveFromISK(...)
- XTimerStartFromISK(...)
- All of above should be paired with a call to: portYIELD_FROM_ISK(...)

- As always with your Interrupt Service Routing code: Get in. Get out... fast.

The Demo

Image: https://www.adafruit.com/products/1461

https://www.adafruit.com/products/1461

The Demo

- Elements/Technology in the demo
- ESP32 (3 boards, networked)

- FreeRTOS

- WIifi/MQTT

- Accelerometer (1 unit)

- LED Light Strips (All 3 units)

—SP32

- From Espressif, creator of the ESP8266
- Supports Wifi and Bluetooth
- Dual Corel! (this is what caught my attention)

* Various internal peripherals, pin mapping, etc:

- GPIO, UART, SPI, 12C, IR Tx/Rx (RMT), Flash, SD, ADC, DAC, PWM, more
* random number generator, hardware encryption support... more!

- Relatively open “ESP-IDF” SDK development: https://github.com/espressif/esp-idf

Lots of ongoing effort and changes... still somewhat raw

First time | used twitter to solve an issue: NttPs://twitter.com/onelittlebat/status/814609491622625281

- Today’s Demo is using 12C for accelerometer. RMT for Led Light Strips, GPIO for a crude CPU
meter, and of course Wifi for MQTT

https://github.com/espressif/esp-idf
https://twitter.com/onelittlebat/status/814609491622625281

MQTT

- Created 1999

¢ What iS MQ_l_l_? (from: htto://moltt.orq/fau)

- *MQTT stands for MQ Telemetry Transport. It is a
publish/subscribe, extremely simple and lightweight
messaging protocol, designed for constrained devices
and low-bandwidth, high-latency or unreliable
networks.” - Great for M2M and the loT

- AWS, others also using MQTT for their loT services

http://mqtt.org/faq

MQTT - Brokers, clients, topics

Client
(sulbbscriber)

Client
(oublisher)

Publish: send data
TO a topic

Subscribe:
recelve data
from a topic,
when it changes

Client
(oublish and
subscribe)

Demo Setup

ESP32 Thing

https://www.sparkfun.com/products/13907

Adafruit ADXL345 Accelerometer

https://www.adafruit.com/products/1231

Adafruit NeoPixel Digital RGB LED Strip

https://www.adafruit.com/products/1461

Some cheap USB power converters, 2 Amps
each

http://www.mpja.com/5VDC-2A-Plug-Supply-Dual-USB/productinfo/32736+PS

Mosquitto MQTT Broker running on laptop

https://mosquitto.org/

0-scope to monitor CPU usage via GPIO

ADXL345 Digital

Accelerometer |
=~ (B0 D .

https://www.sparkfun.com/products/13907
https://www.adafruit.com/products/1231
https://www.adafruit.com/products/1461
https://mosquitto.org/

Demo System Diagram

| Esp32 Thing |

| LedStrip |

subscribed to:
/EshThings/Events/Pattern
/EshThings/Events/Accelerometer

Mosquitto Broker

| Esp32 Thing |

1 LedStrip Accel

subscribed to:
/EshThings/Events/Pattern

publishes to:
/EshThings/Events/Accelerometer

Demo...

A tions?
Th an k yO U ! mgﬁtﬂg\?vzggjemountainsoftware.com

mailto:matthew@covemountainsoftware.com

- Resources:

- http://www.freertos.org/

- http://esp32.com/

- http://espressif.com/products/hardware/esp32/resources

- https://www.sparkfun.com/products/13907

- https://www.adafruit.com/products/1461

- https://www.adafruit.com/products/1231

- http://research.microsoft.com/en-us/um/people/mbj/Mars Pathfinder/Mars Pathfinder.html

- http://research.microsoft.com/en-us/um/people/mbj/mars pathfinder/Authoritative Account.html

- https://mosquitto.org/

- https://qgithub.com/espressif/esp-idf

- https://qithub.com/Lucas-Bruder/ESP32 LED STRIP

- https://github.com/imxievi/esp32-i2c-adxl345

- https://github.com/tuanpmt/esp32-mqtt

- http://www.andrewnoske.com/wiki/Code - heatmaps and color gradients

- https://covemountainsoftware.com/2016/12/27/brother-can-you-spare-a-gpio/

http://www.freertos.org/
http://esp32.com/
http://espressif.com/products/hardware/esp32/resources
https://www.sparkfun.com/products/13907
https://www.adafruit.com/products/1461
https://www.adafruit.com/products/1231
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/Authoritative_Account.html
https://mosquitto.org/
https://github.com/espressif/esp-idf
https://github.com/Lucas-Bruder/ESP32_LED_STRIP
https://github.com/imxieyi/esp32-i2c-adxl345
https://github.com/tuanpmt/esp32-mqtt
http://www.andrewnoske.com/wiki/Code_-_heatmaps_and_color_gradients
https://covemountainsoftware.com/2016/12/27/brother-can-you-spare-a-gpio/

